The high-redshift Universe in X-rays

Andrea Comastri (INAF-OA-Bologna)

Piero Ranalli (Bologna University-INAF), Roberto Gilli (INAF), Cristian Vignali (Bologna University-INAF), Fabrizio Fiore (INAF), Marcella Brusa (MPE), Francesca Civano (SAO-CfA), Elisabeta Lusso (Bologna University-INAF), Ioannis Georgantopoulous (INAF), Kazushi Iwasawa (INAF & ICREA), Mara Salvato (IPP)

The high-z Universe: open issues

Future facilities (ALMA,LOFAR, JWST...) will investigate high-z galaxies and AGN in many bands. Questions for a future X-ray observatory:

How and when do early BHs form and grow? What triggers nuclear activity? How do accretion modes evolve? [radiative efficiency, L/L_{Edd} , $SED(\alpha_{ox})$]

What formed first, BH or galaxy?

Some evidence for larger BH per fixed stellar mass at $z\sim0.3$ -0.6 (Treu+06,Woo+08). Also, suggestions for $M_{BH}/M_*\sim0.1$ -0.3 in bright QSOs at z>4 (Walter+04, Maiolino+07) How do they co-evolve? (obscured growth, feedback, bright QSO sequence?) What is the high-z BH mass function?

SDSS selected MASSIVE (> 109 M_{SUN}) QSO at z > 6 ARE THE TIP OF THE ICEBERG ... --> MUST BE A POPULATION ...

Semi analytic models of BH growth

Merging of Dark Matter Halos with cosmic time (LCDM) + recipes for the baryon physics. Press-Schechter formalism or Millenium Simulations to get halo merger trees. (Volonteri+06, Rhook&Haehnelt08, Menci+08, Marulli+08, Volonteri+10 review)

Common assumption: nuclear trigger at merging

Free parameters:

♦ BH seeds

Direct Collapse: Heavy Seeds

Runaway Merging: Intermediate Seeds

Pop III: Light Seeds

- ♦ SED (e.g. obscuration) and Bolometric Luminosity
- ♦ Probably many more ...

"Rees flow chart"

Seed Mass function

Heavy -----> light

Small Seeds -----> Large Seeds Solid=Eddington - Dotted=Edd. Ratio Distr.

$$M(t) = M(t_0) \exp \left\{ \epsilon_L \left(1 - \epsilon_M \right) / \epsilon_M * \left(t - t_0 \right) / t_E \right\}$$

$$t_E = 0.45 \text{ Gyr} \quad \epsilon_L = L / L_E \quad \epsilon_M = L / M^{\circ} c^2$$

Evolution of BH Spins

Volonteri Haardt Madau 2005

Evolution of BH Spins

April 27, 2010

IXO Conference Paris

Optically selected vs X-ray selected

The number of high-z AGN detected so far

SDSS X-ray sel.\$

z > 3 8000 ~ 100

z > 4 1500 ~ 15

z > 5 150 $\sim 3-4$

 $z \sim 6$ 40 ~ 0

\$ see eg. compilations by Silverman+08, Hasinger08; Brusa+09; Civano+10;

Optically selected vs X-ray selected

The number of high-z AGN detected so far

SDSS X-ray sel.\$

z > 3 8000 ~ 100

z > 4 1500 ~ 15

z > 5 150 $\sim 3-4$

 $z \sim 6$ 40 ~ 0

\$ see eg. compilations by Silverman+08, Hasinger08; Brusa+09; Civano+10;

Deep X-ray surveys

Chandra 2 Ms

will be 4 Ms in 2011

Deep X-ray surveys

Chandra 2 Ms

will be 4 Ms in 2011

XMM ~ 1.5 Ms has reached ~ 2.7-3 Ms

Large area X-ray surveys

April 27, 2010

IXO Conference Paris

X-ray luminosity function

expected/predicted in feedback models (i.e. Menci+08)
Seen in (some) data [e.g. La Franca+05, Treister+06, Hasinger08], not seen in others (Ueda+03, Dwelly&Page 2006), not needed in XRB models (Gilli+07)

Chandra COSMOS

Chandra COSMOS

Lymana

The highest z QSO?

Chandra COSMOS

 $F_X \sim 2.10^{-16} \text{ cgs}$

 $L_{2-10 \text{ keV}} \sim 10^{44} \text{ cgs}$

z ~ 25.4

J ~ 23.6

Need of deep photometry

Searching for z ~ 6 QSO

Estimated space density of Type 1 AGN from optical LF and narrow $\alpha_{\rm OX}$ distribution centered at 1.6. (No obscured AGN)

Searching for z ~ 6 Q50

Estimated space density of Type 1 AGN from optical LF and narrow α_{OX} distribution centered at 1.6. (No obscured AGN)

What's the density of low L_X , high-z AGN?

Evolution of the bulk of the AGN population still to be determined at moderate to high-z.

Flatter evolution or decline as for high luminosity?

Sensitivity needed for high-z AGN census

What do we expect?

High-z AGN space density predictions

Very, Very uncertain ...

max. XLF:

XLF that predicts
the maximum
number of high-z
AGN while being in
agreement with
current "low-z"
XLF.

Confusion

at N(>5) ~ 2×10^4 deg⁻², i.e. 5 ~ 10^{-17} erg/cm²/s

in ~1 Msec (depending on the bkg level)

XLF@ z > 6 would constrain the physics of early BH formation, seeds mass function, accretion mechanisms etc.

Confusion

at N(>5) ~ 2×10^4 deg⁻², i.e. 5 ~ 10^{-17} erg/cm²/s

in ~1 Msec (depending on the bkg level)

XLF@ z > 6 would constrain the physics of early BH formation, seeds mass function, accretion mechanisms etc.

WHAT CAN IXO DO?

Credits: Nandra

April 27, 2010

IXO Conference Paris

WHAT CAN IXO DO?

PESSIMISTIC

Strong density evolution matching bright-end decline found by Brusa et al. 2009

IXO

10⁴

PRINCIPAL

LADE model (Aird et al. 2009)

OPTIMISTIC

LDDE (Ebrero et al. 2009)

April 27, 2010

Area / deg

XMM-COSMOS XMM-LSS

log f_x / erg s⁻¹ cm⁻²

IXO Conference Paris

high-z AGN yields: $N_{tot} \approx S^{1-\alpha}$

if $\alpha > 1$ deep in a single field

if α <1 wider areas

	Decline	maXLF	SAM
z > 4	355	1350	1375
z > 6	15	300	4

FOV ~ 18'x18' Vignetting as in Willingale document

High-z AGN

A pure X-ray selection approach may not be "rewarding"

- + obscuration biases free
- space densities are HIGHLY uncertain

A different approach: search for X-ray emission at the position of known high-z galaxies selected on the basis of multiwavelength data:

- reach fainter X-ray fluxes
- optimize the X-ray band

High-z AGN in the CDFS 2Msec field

- 1. Use GOODS-MUSIC galaxy catalog: photo-z and B, V dropouts to build up a high-z galaxy candidate list.
- 2. Search for the X-ray band that maximizes the S/N of the detected counts. First step toward multi-dimensional source detection (background model)

32 z>3 AGN; 4 z>4.5 AGN, 14 (43%) NOT in Luo et al. catalog

Fiore et al. 2010 (in preparation)

April 27, 2010 IXO Conference Paris

High-z AGN in the CDFS 2Msec field

- 1. Use GOODS-MUSIC galaxy catalog: photo-z and B, V dropouts to build up a high-z galaxy candidate list.
- 2. Search for the X-ray band that maximizes the 5/N of the detected counts. First step toward multi-dimensional source detection (background model)

32 z>3 AGN; 4 z>4.5 AGN, 14 (43%) NOT in Luo et al. catalog

Fiore et al. 2010 (in preparation)

April 27, 2010 IXO Conference Paris

High-z Drop Outs

Standard selection technique

High-z star forming galaxies are pre-selected in color-color diagrams

z ~ 7 (z-mag drops)
Colors from COSMOS
Type 2 AGN at z ~ 7

Need of deep imaging In opt-nearIR (VISTA PanSTARSS, LSST, ... And spectroscopy JWST, ELT, Euclid, ...

IXO X-ray Spectra

WFI simulation of a SDSS like QSO at z = 6, $L_X \sim 3 \times 10^{44}$ cgs - $F_X \sim 10^{-15}$ cgs line EW ~ 40 eV (obs-frame).

100 ks (back. included)

IXO X-ray Spectra

WFI simulation of a SDSS like QSO at z = 6, $L_X \sim 3 \times 10^{44}$ cgs - $F_X \sim 10^{-15}$ cgs line EW ~ 40 eV (obs-frame).

100 ks (back. included)

Obscured AGN at z = 7 ($L_X \sim 10^{43}$ cgs - $F_X \sim 10^{-16}$ cgs, line EW ~ 1.2 keV (rest-frame)

1 Ms (back included)

Redshift determination accuracy +- 0.2

Synergies

The high-z
Universe is a
key science
driver of
JWST & ALMA
E-ELT - TMT

mainly SF

accretion & co-evolution --> IXO

Dust free Q50 at z ~ 6

Hot Dust abundance

Dust poor QSO Have small BH masses And high L/L_E (~ 2)

Early Stage of evolution

Gas and Metal content From X-rays

Jiang+10 Nature

BH Mass

Final remarks

- 5" HEW or better + ~350 arcmin² or larger + "clever" strategy + "enough" time invested in surveys
 --> build up a z > 6 XLF and constrain early BH growth
- → IXO is well matched to the sensitivity of other future facilities to recognize high-z SMBH.
- ♦ IXO would provide excellent spectra for moderately bright high-z QSOs. Unique capability to identify through X-ray spectroscopy faint obscured AGN at high redshift.
- ◇ In the meantime Chandra + XMM Legacy programs AND aggressive multiband data analysis strategies exploiting synergies with HST, HERSCHEL, ALMA, ... (SDSS-like XLF)
- Deep and Large optical and near-IR surveys (PanSTARRS, VISTA, LSST, ...) and deep spectroscopy (JWST, Euclid, ...) are crucial for a joint selection of high-z samples